The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 1 1 1 1 X 0 X X X X X X^2 X X^2 X 0 X 0 X X 1 X X 1 X^2 X^2 1 1 1 1 1 1 X X 1 1 1 1 X 0 X 0 X^2+X 0 X^2+X 0 X X^2 X^2+X X^2 X X^2 X^2+X X^2 X 0 X^2+X 0 X^2+X X^2+X X X^2 X X^2 X X^2+X X 0 X^2 0 X^2 X X X X X^2+X X X^2+X X 0 X^2 0 X X X^2 X X 0 X^2 X^2+X X X^2+X X 0 X^2 0 0 0 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 0 X^2 0 0 X^2 0 X^2 0 0 0 0 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 0 0 X^2 0 0 X^2 0 0 X^2 X^2 X^2 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 0 0 0 X^2 X^2 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 X^2 0 0 0 X^2 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 0 X^2 X^2 0 0 0 0 0 X^2 X^2 0 0 generates a code of length 61 over Z2[X]/(X^3) who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+36x^60+64x^61+12x^62+9x^64+4x^70+2x^72 The gray image is a linear code over GF(2) with n=244, k=7 and d=120. This code was found by Heurico 1.16 in 0.12 seconds.